LabVIEW

Dr Marko Dimitrijević

Akvizicija podataka i merenja

Akvizicija podataka i merenja

- Tipovi signala
- Senzori, kondicioniranje
- Hardver za akviziciju podataka
- Opseg, rezolucija, razlučivost
- Povezivanje izvora i instrumenta
- Semplovanje, Nyquest-ova teorema.

Uvod

Senzor

Senzor pretvara fizički signal u električni, pogodan za merenje i obradu

Signali

- Tipovi signala
 - Diskretni signal, digitalni signali su oblik diskretnih signala
 - Analogni signal
- Informacija koju prenosi signal
 - Diskretni signal: stanje, brzina promene
 - Analogni signal: amplituda, talasni oblik, frekvencija

Tipovi signala

Digitalni signali

Ē

Digital Signal Information

Analogni signali

- Može imati bilo koju vrednost u vremenu
- Tri osobine:
 - amplituda oblik

 - frekvencija

Analogni signal

Analogni signali

Kondicioniranje signala

- Kondicioniranje signala prilagođava signal osobinama akvizicionog sistema
- Kondicioniranje nije uvek neophodno
 - Zavisi od vrste signala

Pojačanje

- Neophodno kod signala sa malom amplitudom (npr. termopar)
- Povećava opseg A/D konvertora i preciznost merenja
- Povećava odnos signal-šum (SNR)

Filtriranje

- Filtriranjem se uklanjaju visokofrekventne (niskofrekventne) komponente signala koji se meri
- Potrebno je prilagoditi signal propusnom opsegu instrumenta (akvizicionog sistema)
- Odstranjuje se šum i smetnje koje su van opsega signala koji se meri

Hardver za akviziciju podataka

DAQ uređaj omogućuje realizaciju sistema za merenje i automatizaciju merenja baziranu na personalnom računaru

Terminal blok i kablovi

Akvizicioni uređaj

- Većina akvizicionih uređaja ima:
 - Analogne ulaze
 - Analogne izlaze
 - Digitalne I/O
 - Brojače

- Specijalizovani uređaji postoje za specifične namene
 - Brzi digitalni I/O
 - Za generisanje signala visokih frekvencija
 - Akvizicija promenljivih signala (vibracije, zvuk)
- Povezuje se preko nekog interfejsa
- Kompatibilni sa
 - PCI, PXI/CompactPCI, ISA/AT, PCMCIA, USB 1.0/2.0/3.0, 1394/Firewire, LAN/WLAN

Konfiguracija

- Analogni ulazi
 - rezolucija
 - opseg
 - Pojačanje
 - Način akvizicije (diferencijalno, RSE, or NRSE)
- Analogni izlazi
 - Interni i eksterni referentni napon
 - Bipolarni i unipolarni

Rezolucija

- Rezolucija može imati dva značenja:
 - Predstavlja najmanju vrednost signala (fizičke veličine) koju instrument može da registruje.
 - Broj bitova A/D konvertora kojim se predstavlja signal
- r rezolucija, N broj nivoa

N = 2^r

• Povećanjem rezolucije signala se povećava i preciznost merenja

Primer različitih rezolucija

Ē

- 3-bitna rezolucija ima 8 naponska nivoa
- 16- bitna rezolucija ima 65536 naponska nivoa

Opseg

- Opseg instrumenta je razlika maksimalne i minimalne vrednosti signala koje instrument registruje
- Akvizicioni sistemi mogu imati različite opsege
 - 0 do +10 V
 - -10 do+10 V
- Opseg uređaja se bira prema signalu koji se meri
- Manji opseg signala povećava preciznost merenja

Pojačanje

- Signal se pojačava da bi najbolje pokrio dinamički opseg A/D konvertora
- Pojačanje može imati vrednost 0.5, 1, 2, 5, 10, 20, 50, ili 100 za većinu akvizicionih uređaja
- Pojačanje se ne zadaje direktno
 - Bira se na osnovu dinamike signala koji se meri, ko i opsega A/D konverora
- Dobro određeno pojačanje povećava preciznost merenog signala

Pojačanje

- Opseg signala 0 do 5 V
- Izabrani opseg A/D konvertora 0 do10 V
- Pojačanje 2

Razlučivost

 Razlučivost (Code Width) je najmanja promena signala (fizičke veličine) koju sistem može da detektuje (određena je rezolucijom, opsegom i pojačanjem)

$$\Delta = \frac{\mathbf{O}}{\mathbf{A}^* \, \mathbf{2}^{\mathsf{r}}}$$

• Manja razlučivost podrazumeva veću preciznost sistema

Povezivanje mase

- Ispravno povezivanje mase je uslov dobrog postupka merenja
- Masa sistema čiji se signali mere određuje način povezivanja mase akvizicionog sistema.
- Neophodni koraci pri povezivanju mase:
 - Odrediti kako je izvor signala uzemljen
 - Izabrati odgovarajuće povezivanje mase

Izvori signala

Uzemljen izvor signala

- Signal je određen u odnosu na masu izvora
 - uzemljenje
 - referentna masa
- Primeri:
 - Izvori napajanja
 - Signal generatori
 - Svi instrumenti koji su priključeni na električnu mrežu

Neuzemljen izvor signala

Merni sistem

- Koriste se tri načina povezivanja mase
 - Diferencijalno
 - sa jednim priključkom sa referentnom tačkom (RSE)
 - sa jednim priključkom bez referentne tačke(NRSE)
- Način povezivanja zavisi od izvora signala

Diferencijalno povezivanje

Ē

- Diferencijalno
 - Dva fizička kanala za jedan signal
 - ACH 0 je uparen sa ACH 8, ACH 1 sa ACH 9, itd.
 - Dobro potiskivanje srednje vrednosti, CMRR i SNR

Sa jednim priključkom sa referentnom tačkom

- Sa jednim priključkom sa referentnom tačkom (RSE)
 - Signal se meri u odnosu na referentnu tačku masu sistema
 - Jedan kanal za jedan signal
 - Mali CMRR

Sa jednim priključkom bez referentne tačke

- Sa jednim priključkom bez referentne tačke (NRSE) ullet
 - Verzija RSE

- Jedan fizički kanal za jedan signal
- Signali se mere u odnosu na tačku AISENSE, ne masu
- AISENSE je "plivajuća" tačka
- Mali CMRR \bullet

			_
ACH8	34	68	ACH0
ACH1	33	67	AIGND
AIGND	32	66	ACH9
ACH10	31	65	ACH2
ACH3	30	64	AIGND
AIGND	29	63	ACH11
ACH4	28	62	AISENSE
ACH4 AIGND	28 27	62 61	AISENSE ACH12
ACH4 AIGND ACH13	28 27 26	62 61 60	AISENSE ACH12 ACH5
ACH4 AIGND ACH13 ACH6	28 27 26 25	62 61 60 59	AISENSE ACH12 ACH5 AIGND
ACH4 AIGND ACH13 ACH6 AIGND	28 27 26 25 24	62 61 60 59 58	AISENSE ACH12 ACH5 AIGND ACH14

Izbor konfiguracije

Opcije povezivanja za uzemljen izvor signala

Ę

<u>Najbolji</u>

- + Veliki CMRR
- Manji broj kanala (polovina)

Ne preporučuje se

 Razlika napona (V_g) između mase izvora i mase instrumenta može da ošteti instrument

<u>Dobar</u>

- + Svi kanali dostupni
- Mali CMRR

Opcije povezivanja za neuzemljen izvor signala

Ę

<u>Najbolji</u>

- + Veliki CMRR
- Manji broj kanala (polovina)
- Neophodni otpornici za polarizaciju

<u>Bolji</u>

- + Svi kanali dostupni
- + Otpornici nisu potrebni
- Mali CMRR

<u>Dobar</u>

- + Svi kanali dostupni
- Neophodni otpornici za polarizaciju
- Mali CMRR

Semplovanje signala

- Analogni signal je kontinualan
- Semplovan signal je niz diskretnih vrednosti dobijenih u određenim vremenskim intervalima.
- Što je frekvencija semplovanja veća, semplovani signal bolje aproksimira realni.
- Ukoliko je frekvencija semplovanja mala, pojavljuje se **aliasing**.

Aliasing

Nyquist-ova teorema

• Nyquist-ova teorema:

Frekvencija semplovanja mora biti dva puta veća od maksimalne frekvencije u spektru signala koji se sempluje.

 U praksi se koristi frekvencija semplovanja 5 - 10 puta veća od maksimalne frekvencije u spektru signala – oversampling

Primer semplovanja

Ē

Pregled

- Signali mogu biti analogni i digitalni (diskretni)
- Komponenta koja pretvara fizički signal u električni naziva se senzor
- Kondicioniranje signala prilagođava signal osobinama akvizicionog sistema – pojačanje i filtriranje
- Hardver za akviziciju podataka omogućuje realizaciju sistema za merenje i automatizaciju merenja baziranu na personalnom računaru
- Opseg, rezolucija, razlučivost su osobine akvizicionog sistema

Pregled

- Povezivanje izvora i instrumenta može biti diferencijalno, sa jednim priključkom sa referentnom tačkom (RSE) i sa jednim priključkom bez referentne tačke(NRSE)
- Semplovan signal je niz diskretnih vrednosti dobijenih u određenim vremenskim intervalima
- Nyquist-ova teorema: frekvencija semplovanja mora biti dva puta veća od maksimalne frekvencije u spektru signala koji se sempluje.